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Abstract: Non-invasive prenatal testing (NIPT) has become an important tool in prenatal screening,
yet the question of “when to test for the best outcome” in clinical practice still largely relies on rule-
of-thumb time windows, and the impact of individual differences—especially maternal BMI—on
testing effectiveness is often underestimated. This study proposes an individualized framework for
determining the testing time that proceeds from dependence identification, nonlinear modelling,
segmented risk evaluation, and global optimization.” We first use Spearman correlation and
distance correlation to characterize the dependence structure between key variables and Y-
chromosome concentration, and then adopt a generalized additive model (GAM) to obtain an
interpretable nonlinear baseline. Building on this, we derive optimal BMI segments via dynamic
programming on model residuals, and construct an integrated risk function that simultaneously
covers false negatives, false positives, and test failure, while incorporating a gestational-age penalty
and an adjustment factor for “attainment status.” Finally, we perform a global search with simulated
annealing over the feasible gestational window to obtain the optimal testing time for each segment.
Empirical results show that, under the baseline scenario, the optimal testing times for the six BMI
groups cluster around 10.0-11.7 weeks, which are overall substantially earlier than the actual
testing weeks (by about 4.4-8.4 weeks). Risk decomposition indicates that the delay penalty
dominates, and test-failure risk is higher in high-BMI groups. Under multiple error scenarios of
light/moderate/severe perturbations, the optimal time essentially converges to around 10.0 weeks,
indicating robust decision-making. For female-fetus samples, the constructed SVM classifier
achieves an AUC of 0.9550 without relying on Y-chromosome information. The framework
provides a reproducible and practical quantitative basis for individualized NIPT testing-time
recommendations and female-fetus abnormality classification.

1. Introduction

Non-invasive prenatal testing (NIPT)[1], [2] analyzes fetal cell-free DNA in maternal peripheral
blood through high-throughput sequencing to screen for common chromosomal aneuploidies at an
early stage. Because of its safety and its high sensitivity and specificity, it has been widely used in
clinical practice. However, the selection of testing time often follows a “one-size-fits-all window”
rooted in experience, which fails to adequately reflect individual differences—particularly the
impacts of maternal BMI[3], [4], gestational progression, and sequencing quality control indicators
on the “attainment probability” and interpretive stability.

Existing studies generally proceed along two paths. One line emphasizes biological priors
centered on “fetal fraction/attainment thresholds,” supplemented by linear or semiparametric
models to adjust for the effects of gestational age and maternal characteristics. The other introduces
machine-learning models to directly model the probabilities of positive/negative outcomes and
failure using multi-source features, with the testing time chosen by empirical or heuristic criteria.
The former has advantages in interpretability but is limited in its ability to capture nonlinear and
non-monotonic effects; the latter has stronger predictive power but often lacks a decision-
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quantification framework that can directly connect to clinical costs.

To address these shortcomings, this paper proposes, on a real clinical dataset, an integrated
“statistics—learning—optimization” solution: use distance correlation and GAM[5], [6] to clarify the
nonlinear roles of key variables; implement data-driven BMI segmentation via dynamic
programming on residuals; construct an integrated risk function—*"“false negative/false positive/test
failure + gestational-age penalty + attainment status”—that directly maps to clinical costs; and
directly minimize this risk over the feasible gestational window via simulated annealing to obtain
individualized optimal testing times for each segment. Furthermore, recognizing the inevitability of
technical perturbations such as fluctuations in read depth, GC bias, and alignment rate, we define
error scenarios of varying intensities under the same estimator to evaluate the stability of the
optimal plan. Meanwhile, for the challenge of female-fetus classification without Y-chromosome
information, we build an SVM-based classifier using multi-source features to complete the
application pipeline. The overall framework yields the following highlights in experiments: BMI is
automatically partitioned into six segments; under the baseline, optimal times concentrate around
10-12 weeks and are overall earlier than the actual testing time; the delay penalty is the dominant
risk component; test-failure risk is higher in high-BMI groups; under error scenarios, optimal times
robustly converge to around 10 weeks; and the female-fetus classifier attains a high AUC with
interpretable importance clues. Collectively, these results indicate that, compared with a fixed
window, individualized timing recommendations can significantly reduce overall risk without
compromising classification performance, providing a basis for optimizing clinical workflows.

2. Methods
2.1 Data Preprocessing and Label Construction

After standardizing fields, denoising, and handling missing values in the raw data, we unify
measurement units and apply logarithmic/standardization transforms to skewed continuous
variables to alleviate heteroskedasticity. Centered on the three types of events that need to be
modeled in subsequent risk evaluation, we construct binary labels:

Yen = 1{Genetically abnormal but NIPT indicates healthy } (D
Yrp = 1{Healthy but NIPT indicates abnormality } )
Yain = 1{Detection invalid} (3)

used to estimate Ppy, Prp, Praj. At the same time, we retain the “valid detection probability”

P14 and the gestational-age penalty and attainment adjustment factor needed subsequently in the
risk-function components so they can be linked within a unified framework.

2.2 Dependence Identification and GAM Modeling

To identify the dependence structure between key covariates and the response, we first
characterize monotonic relationships with Spearman’s rank correlation, and then test for more
general (including nonlinear and non-monotonic) dependence using distance correlation (dCor).
The definition of dCor is:

dCov(X,Y)
JdVar(X) dVar(Y)

which equals 0 if and only if the variables are independent, compensating for the blind spot of
rank correlation with respect to non-monotonic patterns. With multiple-testing correction and
interval estimation, we use dCor to confirm significant nonlinear dependence between gestational
age, BMI, age, fetal-health[7], [8] indicator, etc., and concentration, with X-chromosome
concentration most strongly associated with concentration (see Table 1), laying the groundwork for
subsequent nonlinear modeling.

dCor(X,Y) = € [0,1] 4)
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Table 1: Significance test results of distance correlation coefficients

Variable dCor 95% CI Effect size Significance
X-chromosome concentration 0.514 [0.465, 0.561] Large ok
Maternal BMI 0.165 | [0.123, 0.223] Small oAk
Age 0.145 | [0.109, 0.201] Small oAk
Gestational age 0.129 | [0.106, 0.181] Small oAk
Fetal health (yes/no) 0.126 | [0.074,0.177] Small ook
IVF pregnancy 0.072 | [0.032,0.120] | Very small *
Parity 0.070 | [0.058,0.120] | Very small ns
Gravidity 0.068 | [0.052,0.121] | Very small ns

Accordingly, we adopt a generalized additive model (GAM) to capture the nonlinear effects of
key variables on while retaining interpretability. The model is:

Ellog(V)] = Bo + f1(C) + f2()) + f3(K) + fa(W) + B5 AE )

Where V is Y-chromosome concentration; C is age; J is gestational age at testing; K is BMI, W
is X-chromosome concentration; AE is the fetal-health indicator. The are spline smoothers (the
basis size of each smoother is given in the text) used to flexibly fit nonlinear effects.

2.3 Segmented Risk Modeling and Global Optimization
2.3.1 Optimal BMI Segmentation Based on GAM Residuals

Within the GAM framework of Section 2.2, let the residual be e = log(V) — m(C,J,K, W, AE).
As shown in Figure 1, the “residual-BMI” relationship exhibits systematic shifts in certain regions

of K, necessitating segmentation.
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Figure 1 Residual vs. BMI

Let the breakpoints by < by < - < bg < bg,q be (the endpoints are the sample
minimum/maximum BMI). For any interval [b;, b;), define the cost:

o bj f(d 2
cost(i,j) = Var (e | K € [y b)) +a [, (= f(0} " dk (6)
Intra-segment residual variance Roughness Penalty on Residual Mean Curves

Under the constraints of a maximum number K,,,, of segments and an additional segment
penalty y, we solve the dynamic programming problem:

: K
KsKrE;)I},{bT} r=o cost(r,r +1) +yK (7)
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and obtain the optimal set of breakpoints via backtracking.
2.3.2 Unified Characterization of the Risk Function
Given BMI segment K and gestational age /, define the integrated risk:

RU 1K) = [AenPen(, K) + AppPrp(J, K) + Agait (1 — PyatiaJ, K))] - RiskPenalty(J) -
AdjustmentFactor (8)

where 1. > 0 denotes the relative cost weights for error types/failure, RiskPenalty(J) represents
the gestational-age penalty for delayed testing, and AdjustmentFactor is the adjustment factor
based on the “attainment status” of Y concentration, as shown in Figure 2. This expression provides
a unified measure—across BMI segments—of the risk differences induced by “when to test,” and
serves as the objective for the subsequent search for the optimal time.

group 20.70~31.76: w

Risk Value (Log-scaled)
Risk Value (Log-scaled)

group 31.78~45.71

o o 8o
Determine gestational age

o 160 5o
Determine gestational age

) Risk Heatmap with Zero Error b) Risk Heatmap with Disturbance Factors Included

Figure 2 Comparison of risk heatmaps for optimal testing time across BMI groups under different
error conditions (white asterisks indicate the optimal testing time)

2.3.3 Estimation of Probability Terms and Segment-Level Aggregation

Pen, Pep, Prai, Poaiq are approximated via supervised learning using a gradient-boosting
implementation that performs binary probability estimation on features such as (J,K,C, W, ...).
Within each BMI segment, for a given gestational age, we average (or robustly average) individual
predicted probabilities for substitution into the components of R(J | K). This approach leverages
high-dimensional nonlinear structure without sacrificing interpretability and facilitates updates
across segments.

2.3.4 Simulated Annealing Search for the Globally Optimal Testing Time

Given BMI segment K and risk function R(J | K), over the feasible gestational window ] € U_,j],
we use simulated annealing (SA) to find the global minimizer:

J* = arg min R(J | K) 9)
JEUJ]

Where R(J | K) plays the role of the energy, so we write E(J) = R(J | K).

Set the initial temperature T, > 0, terminal temperature Ty,;, > 0, and geometric cooling factor
a € (0,1). Randomly draw a starting point J. ey ~ Unif([J,J]) within the feasible domain and
compute the current energy E. rent = R Jeumrent | K). Simultaneously set to store the best solution
found so far and its energy. The main loop starts with T « T, and terminates when T < Tpip-

At each temperature level T, generate a candidate from the neighborhood of the current solution,

Jhew = H[lj] Ucurrent 6 - €),€ ~ N(0,1) (10)

where Il is a projection (or clipping) operator enforcing the gestational bounds, and § > 0 is a
step-size factor that can be linked to the temperature (in implementation, is used, with
clipping/projection to [10,22] weeks). Then compute E, ., = R(Jyew | K). This neighborhood and
clipping strategy is based on a “neighborhood perturbation + clip” implementation.
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If the candidate improves the objective (E ., < E.ument)> @ccept it unconditionally; otherwise,
accept the “worse” solution with probability:

w

ne curren ET\CW
Pacc = €Xp (_ ) = €xp (+) (1 1)

After acceptance, update (J.ymrents Ecurrem) <« (Juews Enew)»> and refresh the global best pair. This
criterion allows “uphill moves” with higher probability at high temperature to escape local minima;
as temperature decreases, the probability of accepting worse solutions decays exponentially.

Update the temperature geometrically T < aT, until T < Ty, then output the recorded optimal
gestational age. The implementation also provides an equivalent termination in terms of a maximum
number of iterations Ny, ,: let:

Tminy i :
Ti = To( ) Mmax (0 = 0, .., Nmax) (12)
so that after exactly perturbations, the temperature reaches Ty, .

Considering the non-convexity of R(J | K) and the numerical noise in the probability terms
Pen, Prp, Praip, we repeat SA multiple times (default 3) for each BMI segment, retaining the run with
the smallest risk. If multiple runs still fail to produce a usable solution, we fall back to a uniform
grid search to ensure a feasible solution exists.

Each “energy” evaluation in SA is computed via E(J) = R(J | K): first obtain the probability
terms from the learner, then assemble the risk and multiply by the gestational-age penalty. Hence
the computational complexity of SA is dominated by the cost of a single risk evaluation, with
overall complexity O(Ny,.x X cost[R]).

2.3.5 Perturbation by Testing-Error Scenarios and Robustness Evaluation

Recognizing that fluctuations in read depth, GC bias, and alignment rate may alter P and P,4;4,
we apply random perturbations of layered intensity (light/moderate/severe) to the input features
under the same estimator, substitute the updated probabilities into R(J | K), and repeat the SA
search to compare the stability of J* under different scenarios.

2.4 Extended Model for Abnormality Classification in Female Fetuses (SVM)

Because female fetuses lack information, we construct an independent classifier that does not
rely on . We first use the F-test (ANOVA) for feature screening across multi-dimensional clinical
and sequencing features; then we train a nonlinear SVM[9], [10] for classification; we extract
interpretable rules via a decision tree; and finally, we form a three-tier risk-classification procedure
through threshold optimization.

3. Experiments and Results

Building on the model specification and derivations in Chapter 2, this chapter presents the data
overview, baseline optimal testing times, the composition of risk and its evolution with gestational
age, robustness under error scenarios, and empirical results for the female-fetus extended classifier.
The numbering of figures and tables follows the original manuscript for cross-reference. For
consistency with Chapter 2, we retain the previously defined notation and segmentation scheme.

3.1 Data Description

After GAM modeling and residual analysis, optimal segmentation of BMI into six groups was
determined via dynamic programming;:
(20.7,28.6], (28.6,32.0],(32.0,32.5], (32.5,33.9], (33.9,34.5], (34.5,46.9] ; systematic shifts in
residuals versus BMI appear in the 28-35 range, validating the need for segmentation, as shown in
Figures 3, 4, and 5.
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Figure 3 Boxplots of residuals by segment

2 25 EY E3 © 4
BMI

Figure 4 Residual vs. BMI (with segmentation lines)

The sample size, BMI range, and average BMI for each segment are also used for subsequent
risk aggregation and optimal-time calculation.

3.2 GAM Fitting and Key Variable Effects

Following dependence screening, the original manuscript fits with a GAM using the
nonlinear/linear combination of age, gestational age , BMI , X-chromosome concentration , and
fetal-health indicator , with smoother basis sizes of , and provides detailed spline coefficients as
shown in Table 2.

Table 2 Detailed spline coefficients of the GAM

Variable Spline coefficients (in order of basis functions)
Age C 0.0194,-0.0092,0.0103,0.0017,0.0044,0.0016,-0.0053,0.0012,-0.0134,-
0.0018,0.0196,0.0218,-0.0020,-0.0310,0.0056
Gestational Age -0.0029,-0.0035,0.0177,-0.0024,0.0155,-0.0088,-
J 0.0020,0.0143,0.0209,0.0168,0.0113,0.0049,-0.0100
-0.0016,0.0075,0.0201,0.0347,0.0170,0.0229,0.0158,0.0024,0.0092,0.0145,-0.0075,-
Maternal BMI K

0.0375,-0.0468
X Chromosome -0.0539,-0.0511,-0.0253,-0.0121,0.0388,0.0917.0.1460,0.0029
Concentration W

Fetal Health AE 0.0875

3.3 Baseline Optimal Testing Time

Under the “no-error baseline” scenario, combining XGBoost probability estimates with the risk
function and using simulated annealing to search across BMI segments yields the optimal NIPT
testing time and corresponding minimum risk values shown in Table 3: for groups 1-6, the optimal
weeks are approximately 11.1, 10.6, 11.6, 11.7, 10.9, and 10.0; the corresponding minimum risks
are 2.3048, 1.9194, 2.1283, 2.7160, 1.0201, and 1.8519. Compared with the actual testing weeks,
these optimal times are generally earlier by 4.4—8.4 weeks; the highest-BMI group (group 6) has the
earliest recommendation (10.0 weeks) and the largest improvement (8.4 weeks). In addition, BMI
and the optimal testing time show a moderate negative correlation (), suggesting earlier testing for
higher BMI.
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Table 3 Baseline optimal NIPT testing time by BMI group

Group | BMI Range | Sample | Average Actual Optimal Risk | Improvement
Size BMI Post- Timing Value (Weeks)
Pregnancy
1 <28.6 57 27.6 16.6 11.1 2.3048 -5.6
2 (28.6,32.0) 456 30.4 16.8 10.6 1.9194 -6.2
3 (32.0,32.5) 66 32.2 16.6 11.6 2.1283 -5.0
4 (32.5,33.9) 164 33.2 16.2 11.7 2.7160 -4.4
5 (33.9,34.5) 55 34.2 16.0 10.9 1.0201 -5.0
6 >34.5 197 36.8 18.4 10.0 1.8519 -8.4

3.4 Composition of Risk and Its Evolution with Gestational Age

To explain the above optimal times, the manuscript decomposes the integrated risk into
components (delay penalty, false negative, false positive, and test failure). Figure 5 shows that the
delay penalty dominates across groups (average contribution >60%); the test-failure risk is higher in
high-BMI groups (groups 4 and 6), consistent with clinical experience.

isk

Risk Value

group 1 group 2 group 3 group 4 group 5 group 6
Figure 5 Decomposition of risk components by BMI segment

3.5 Robustness under Error Scenarios

Accounting for technical fluctuations in read depth, GC bias, and alignment rate, three error
scenarios—Ilight, moderate, and severe—are defined. Features are perturbed accordingly while
reusing the same estimator and optimization flow. Results are shown in Table 4: the optimal time in
nearly all BMI groups shifts to 10.0 weeks (groups 1-5 move earlier by about 1.1, 0.6, 1.6, 1.7, and
0.9 weeks, respectively, relative to the baseline; group 6 remains at 10.0), indicating a high degree
of consistency under error.

Table 4. Changes in optimal NIPT testing time under different error scenarios

BMI G . Baseline Minor error Moderate error Severe error
TOUPINE 1™ Time | Risk Value time Aweek time Aweek time Aweek
1 11.1 2.3048 10.0 -1.1 10.0 -1.1 10.0 -1.1
2 10.6 1.9194 10.0 -0.6 10.0 -0.6 10.0 -0.6
3 11.6 2.1283 10.0 -1.6 10.0 -1.6 10.0 -1.6
4 11.7 2.7160 10.0 -1.7 10.0 -1.7 10.0 -1.7
5 10.9 1.0201 10.0 -0.9 10.0 -0.9 10.0 -0.9
6 10.0 1.8519 10.0 0.0 10.0 0.0 10.0 0.0

3.6 Extended Model for Female-Fetus Abnormality Classification

On female-fetus samples without information, an SVM classifier is trained and reports ROC
AUC = 0.9550, indicating good classification performance, as shown in Figure 6.
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With the accompanying sensitivity analysis, the 18-chromosome value contributes the most,
followed by the X- and 13-chromosome values, providing a basis for rule extraction and threshold
optimization.

4. Conclusion

This study addresses two core questions for NIPT “when to test for the best outcome” and “how
to classify abnormalities in female fetuses”—by proposing an individualized decision framework
built on nonlinear statistical modeling, segmented risk metrics, and global optimization. Empirical
results show that, on real data, the six BMI segments derived from residuals effectively alleviate
systematic bias of a single model across populations. The integrated risk function organically
combines false negatives, false positives, and test failures with a gestational-age penalty and
attainment status, enabling the testing time to be directly tied to clinical costs in an interpretable
way. On this basis, simulated annealing yields optimal testing times concentrated in 10.0-11.7
weeks, significantly earlier than actual testing gestational ages, and exhibiting high consistency
across multiple error scenarios. The female-fetus extension attains an AUC of 0.9550 without
relying on Y-chromosome information, completing applicability across fetal sexes. We emphasize
that limitations remain: the setting of weight and penalty parameters requires further prospective
clinical evidence; data sources and population composition may affect generalizability. Future work
can pursue external validation on multi-center data, clinical calibration of cost weights, deeper
integration into physician workflows, and multimodal fusion with ultrasound and metabolic
indicators. Overall, this paper presents a reusable, interpretable, and noise-robust path to
individualized determination of NIPT testing time and provides an effective supplement for female-
fetus classification, with potential for clinical translation.
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